As vehicles have become more sophisticated, their air conditioning systems have also gotten more complicated. The variable displacement a/c compressor is one example of this increased complexity.
There are several different variable displacement compressor manufacturers, but the diagnostic approach to each is very similar. There are two basic designs. The first type is a direct-drive compressor that’s controlled by a pulse-width modulated voltage signal only. The second type is basically the same, but with the addition of a conventional electromagnetic clutch mounted on the compressor shaft.

The direct-drive compressor has at least one drawback. If the refrigerant leaks out of the system, there’s no pressure to push the refrigerant oil through the system. There’s no way to temporarily disengage the compressor, which is still being driven by the engine at this point. Catastrophic compressor failure may result. A compressor equipped with a clutch stands a better chance of survival because a low-pressure switch would signal the PCM to disengage the clutch.

This is why locating refrigerant leaks on systems with direct-drive compressors has never been more important to the life of the compre-
Diagnosing Variable Displacement Compressors

The direct-drive clutch is locked to the compressor shaft with a shear pin or hard rubber mount. This is a close-up view of the clutch on one such compressor. The hard rubber mounts are placed between the main hub and the outer ring of the clutch (arrows). If the compressor fails for any reason, these mounts will shear.

An in.-H₂O pressure gauge is used mainly for evap testing; however, it also works very well for locating a/c service port leaks. Schrader valves are very common locations for refrigerant leaks. An in.-H₂O pressure gauge can be used to determine if the valve is leaking. Make sure the hose makes a snug fit over the valve. If there is a leak, the gauge needle will rise slightly when the hose is connected to the service port.

The total pulse-width modulated time on Toyota is 2mS. If the pulse time is 1mS on and 1mS off, then pulse time would equal 50% on time. A DVOM would display a reading between 6 and 7V.

The direct-drive clutch is locked to the compressor shaft with a shear pin or hard rubber mount. This is a close-up view of the clutch on one such compressor. The hard rubber mounts are placed between the main hub and the outer ring of the clutch (arrows). If the compressor fails for any reason, these mounts will shear.

An in.-H₂O pressure gauge is used mainly for evap testing; however, it also works very well for locating a/c service port leaks. Schrader valves are very common locations for refrigerant leaks. An in.-H₂O pressure gauge can be used to determine if the valve is leaking. Make sure the hose makes a snug fit over the valve. If there is a leak, the gauge needle will rise slightly when the hose is connected to the service port.

The total pulse-width modulated time on Toyota is 2mS. If the pulse time is 1mS on and 1mS off, then pulse time would equal 50% on time. A DVOM would display a reading between 6 and 7V.

The direct-drive clutch is locked to the compressor shaft with a shear pin or hard rubber mount. This is a close-up view of the clutch on one such compressor. The hard rubber mounts are placed between the main hub and the outer ring of the clutch (arrows). If the compressor fails for any reason, these mounts will shear.

An in.-H₂O pressure gauge is used mainly for evap testing; however, it also works very well for locating a/c service port leaks. Schrader valves are very common locations for refrigerant leaks. An in.-H₂O pressure gauge can be used to determine if the valve is leaking. Make sure the hose makes a snug fit over the valve. If there is a leak, the gauge needle will rise slightly when the hose is connected to the service port.

The total pulse-width modulated time on Toyota is 2mS. If the pulse time is 1mS on and 1mS off, then pulse time would equal 50% on time. A DVOM would display a reading between 6 and 7V.
compressor to drop off the pressure. Your manifold gauge pressures would also be affected. You might think there’s a leak in the system. Adding refrigerant at this point could easily overcharge the system.

As stated previously, direct-drive compressors are constantly driven by the engine. As a safety feature, the compressor features a plastic shear pin or hard rubber clutch plate (similar to a harmonic balancer) to drive the compressor shaft. If the compressor suffers a catastrophic internal failure, the shear pin or clutch plate breaks, separating the seized compressor from any other driven components.

To check the clutch, remove the drive belt tension. Manually rotate the direct-drive clutch and feel for a slight resistance or drag. If the clutch freewheels and/or part of it doesn’t turn, then the pin or the clutch rubber has sheared for some reason. Excessive pressure or a mechanical failure of the compressor has occurred.

Another type of problem that can cause the system to fail to operate is input signals to the a/c module. Some

Use A PicoScope® like a Pro

With step-by-step directions from our experts covering connections, scope settings, waveform capture, and diagnostic notes for key automotive systems.

The “Automotive” menu in our PicoScope 6 software contains over 150 guided tests developed by experienced auto scope pros to help you quickly and effectively use your PicoScope to troubleshoot common issues in these categories:

Charging & Starting • Sensors • Ignition • Communications Networks • Pressure Sensors • Motorcycles

For More Info: www.picoauto.com or call 800-591-2796

Visit our online test library: www.picoauto.com/library/automotive-guided-tests

©2017 Pico Technology LLC. Pico Technology and PicoScope are registered trademarks of Pico Technology LLC.
They’re not just OEM quality...they are the OEM parts!

Our new VDO OEM Direct Parts Program gives you OEM parts direct from the manufacturer – that’s us! Our line includes Air Control and Electronic Throttle Valves, Flex Fuel Sensors, Fuel Modules, Fuel Injectors, MAF/MAP Sensors and Temperature Controlling Water Pumps.

You get the same high quality original equipment parts we supply to vehicle OEMs worldwide, but affordably priced to keep you competitive.

For more information, call: 800-564-5066 or email: salessupport-us@vdo.com

When the system is being commanded full on, the pulse-width modulated time will be at 95% on. A DVOM would display 12 to 13V with the engine running.
of the input sensors that must be checked include the evaporator temp sensor, the high/low pressure sensor, the ambient temperature sensor, the solar sensor and the engine coolant temp sensor.

If a sensor is totally out of range, a code will usually be set. However, a sensor that’s stuck somewhere in its normal operating range could affect the operation of an a/c system. How many times have we seen the compressor fail to turn on due to a temperature sensor reporting an engine overheating problem?

If the variable voltage signal to the compressor is close to 0V, or 10% on time, then something is commanding the system off. Check the voltage signal at the pulse-width modulated compressor solenoid control wire at the a/c control module first. An open or grounded circuit in the wiring will prevent the system from operating. Next, check the a/c control module for codes. These codes must be addressed first. Some system modules have been programmed to disable the a/c system when certain codes are set.

To test the performance of the compressor’s variable control solenoid, perform the following steps: 1. Connect a lab scope to the variable control solenoid on the compressor. Connect your a/c manifold pressure gauges at this point as well. 2. Start the vehicle, then adjust the a/c controls for maximum cooling and set the blower speed on High. 3. While watching the scope, jab the throttle to the floor. The pulse-width signal on the scope should momentarily drop to 0%, shutting off the compressor.

On some vehicles, the pulse-width on time may drop only to 10%. The important thing to note is that the control unit registered the rapid change in throttle opening and responded by reducing the compressor output. When the compressor is commanded back on, the scope pulse-width modulated signal may reach only 40%, then gradually rise to 95% on time. This would be considered normal operation.

Each manufacturer’s control of the compressor may be slightly different. Again, it would be wise to monitor the pulse control signals to the compressor while servicing the system. It may add to the cost of the service, but will help prevent comebacks.

NOTICE

This article can be found online at www.motormagazine.com.